



EN12326-1:2004							
Commercial document issued by:			LCTP :	se, Spain			
Location of the mine quarry:			Piz Gonta, O T Rigal, Cabralleda de Valdeorra				s, Spain
Date of sampling: December 2015			Date of testing: January 2016				
This document records the conformal of the test results and the requirement 1:2004							
Product description and commercial name			dale Blu	Conformity			
Dimensional tolerances							
Format		Recta	angles				
Deviation from declared length		<5mr	m	Yes			
Deviation from declared width		<5mr	m	Yes			
Deviation from declared square	ness	<1mr	m				Yes
Deviation from straightness of e	edges	<1%		Yes			
Slate type for deviation from fla	Slate type for deviation from flatness		Smooth				
Deviation from flatness				Yes			
2. Thickness							
Slate type for packed thickness	Slate type for packed thickness calculation				Normal	Textured	
Nominal thickness and variation	Nominal thickness and variation				+/- 35%		Yes
3. Strength							
Characteristic MoR		Trans	sverse	39МРа	Longitudinal	58MPa	Yes
Mean failure load		Trans	sverse	48Mpa	Longitudinal	69Мра	Yes
4. Water absorption		A1 –	0.32%	Yes			
5. Freeze thaw							NR
6. Thermal cycle test		T1					Yes
7. Carbonate content		0.399	%	Yes			
8. Sulphur dioxide Exposure tests	≤20% carbonate	S1		Yes			
	>20% carbonate						
9. Non-carbonate carbon content		0.27%					Yes
10. External fire exposure		Deer	ned to s	Yes			
11. Reaction to fire			ned to s	Yes			
12. Release of dangerous substances		None clado	in cond ling	Yes			

Date of sampling and testing

Kentdale Blue Grey

If more than on date is applicable to sampling or testing they

should be indicated against the individual test results


Product description	n			Slate for roofing and external cladding or carbonate slate for roofing and external cladding				
1. Dimensional Tolerances								
Length and width				Maximum deviation ± 5mm				
Deviation from sq	Deviation from squareness			Maximum deviation 1% of the length				
Deviation from straightness of edges				Slate length ≤500mm Permitted deviation ≤5mm				
			Slate length >500mm Permitted deviation ≤1% of the length					
Flatness: The limi	Flatness: The limits of deviation from flatness is defined for four types of slate. The bevelled edges shall be applied to the convex face. Slates with deviation from flatness in excess of the limit may be used for special applications			Slate type				
				Very smooth				
convex face. Slate				Smooth				
				Normal				
				Textured				
2. Thickness 3, in be Lo 3. Strength or	local climate relation to th low. ngitudinal ar modulus. Ho	conditions an e slate's perfo nd transverse l owever the bas	d traditional rmance in bending straic nominal	al construction to the appropriate ength and modu thickness is def	echniques. The sulfur dioxide t ulus of rupture; termined as a f	e basic nominal the test (if required) a there is no limit to function of the be	the equations given in nickness is increased as shown in 7 and 8 for bending strength and strength using the	
$e_l = x \sqrt{\frac{l}{R_{cl}}}$ Where $e_l \text{ is the } e_t is th$			e longitudinal thickness in millimeters(mm) e transverse thickness, in millimeters (mm) e length of slate, in millimeters (mm) e width of the slate, in millimeters(mm) e characteristic transverse modulus of rupture in megapascals (MPa) e characteristic longitudinal modulus of rupture in megapascals (Mpa)					
National factor x	Country	Transverse	Longitudi		Country	Transverse	Longitudinal	
	Belgium	1.35	1.35		Italy	1.2	1.2	
	France	1.25	1.4		Spain	1.2	1.2	
	Germany	1.2	1.2		UK	0.9	1.1	

transverse modulus of rupture the t-statistic is greater than 2.021

Those countries that have not declared a national value should select a value or a pair of values in relation to their countries climate and traditional construction techniques. It should not be less than the minimum value or pair of values given above.

 e_l and e_t are determined by using the length/ and the width b of the slates. The maximum value determined is the basic individual thickness of the slate e_{bi} . The basic individual thickness is increased in relation to the slates performance in the appropriate sulfur dioxide test as shown in 7 and 8 below. For a significant difference between the longitudinal and

T2 Oxidation or appearance changes of the metallic inclusions with runs of discoloration but without structural changes. T3 Oxidation or appearance changes of metallic minerals which penetrate the slate and risk the formation of holes. Note: Slates within code T3, which potentially may result in water penetration should only be used selectively with sumethods of construction that avoid such penetration. Slates showing exfoliation splitting or other structural changes it test are not acceptable. There is no limit on carbonate content. However, the carbonate content determines which dioxide exposure test procedure should be carried out and, together with the strength, it minimum nominal thickness of the product. T6 Carbonate content. If the carbonate content is less than 20% then the sulfur dioxide exposure test procedure in EN 12326-2:2000, 15.1, applies. If the carbonate content is 20% or more, the sulfur dioxide exposure tests procedure in EN 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. 8. Minimal nominal thickness in relation to carbonate content and sulfur dioxide exposure code. Carbonate content % $SO_2 = \text{Exposure test code from EN 12326-2:2000, 15.1}$ None $S1 = \frac{S_0}{S_0} = \frac{S_0}{S_$	er absorption	tes shall not exceed 0.6% unless they can satisfy	·				
Code Observation in the test T1 No changes in appearance. Surface oxidation of metallic minerals. Color changes that neither affect the structure nor form runs of discoloration. T2 Oxidation or appearance changes of the metallic inclusions with runs of discoloration but without structural changes. Oxidation or appearance changes of metallic minerals which penetrate the slate and risk the formation of holes. Oxidation or appearance changes of metallic minerals which penetrate the slate and risk the formation of holes. Oxidation or appearance changes of metallic minerals which penetrate the slate and risk the subject of the pelo support of the pelo suppo	ze-thaw test	Student's t-test at the 2.5% significant level (slate:					
Code Observation in the test to the standard of the	mal cycle test:	s the meaning of the test codes:					
Accident affect the structure nor form runs of discoloration. 72 Oxidation or appearance changes of the metallic inclusions with runs of discoloration but without structural changes. 73 Oxidation or appearance changes of metallic minerals which penetrate the slate and risk the formation of holes. 74 Oxidation or appearance changes of metallic minerals which penetrate the slate and risk the formation of holes. 75 Oxidation or appearance changes of metallic minerals which penetrate the slate and risk the subject that a construction of holes. 76 Note: Slates within code T3, which potentially may result in water penetration should only be used selectively with subject to construction that avoid such penetration. Slates showing exfoliation splitting or other structural changes is test are not acceptable. 77 There is no limit on carbonate content. However, the carbonate content determines which dioxide exposure test procedure should be carried out and, together with the strength, it minimum nominal thickness of the product. 78 If the carbonate content is less than 20% then the sulfur dioxide exposure test procedure apposure tests procedure in EN 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. 79 Exposure tests procedure in EN 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. 80 Exposure tests code from EN 12326-2:2000, 15.1 applies. Plant of Softened layer from EN 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. 81 Sq. Sq. Sq. Softened layer from EN 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. 82 Exposure test code from EN 12326-2:2000, 15.1 applies. Plant of Softened layer from EN 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. 83 Sq. Sq. Softened layer from EN 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. 84 Sq.		ation in the test					
There is no limit on carbonate content. However, the carbonate content determines which development ests are not acceptable. There is no limit on carbonate content. However, the carbonate content determines which dioxide exposure test procedure should be carried out and, together with the strength, the carbonate content. If the carbonate content is less than 20% then the sulfur dioxide exposure test procedure in Eh 12326-2:2000, 15.2 apply. The minimum thickness is relation to carbonate content and sulfur dioxide exposure code. Carbonate content $\begin{pmatrix} SO_2 \\ \text{exposure test} \\ \text{from EN 12326-2:2000}, 15.1 \\ \text{S1} \\ \text{S2} \\ \text{S2} \\ \text{S2} \\ \text{S3} \end{pmatrix}$ Depth of softened layer from EN 12326-2:2000, 15.2 apply. Thickness adjustment for Eh 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. S1	affect the str	tion.	Acceptable				
T3 Oxidation or appearance changes of metallic minerals which penetrate the slate and risk the formation of holes. Note: Slates within code T3, which potentially may result in water penetration should only be used selectively with sumethods of construction that avoid such penetration. Slates showing exfoliation splitting or other structural changes it test are not acceptable. There is no limit on carbonate content. However, the carbonate content determines which dioxide exposure test procedure should be carried out and, together with the strength, it minimum nominal thickness of the product. 7. Carbonate content. If the carbonate content is less than 20% then the sulfur dioxide exposure test procedure account in EN 12326-2:2000, 15.1, applies. If the carbonate content is 20% or more, the sulfur dioxide exposure tests procedure in EN 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. 8. Minimal nominal thickness in relation to carbonate content and sulfur dioxide exposure code. Carbonate content % $SO_2 \text{ exposure test code from EN 12326-2:2000, 15.1} \text{ Depth of softened layer from EN12326-2:2000, 15.2} \text{ None}$ $S1 \text{ S1} \text{ None}$ $S2 \text{ S3} \text{ Pair} = \frac{e_{bi} + 5\%}{e_{bi} + 10\%}$ $S3 \text{ S1} \text{ S2} \text{ Pair} = \frac{e_{bi} + 5\%}{e_{bi} + 10\%}$ $S3 \text{ Pair} = \frac{e_{bi} + 10\%}{e_{bi} + 10\%}$		allic inclusions with runs of discoloration but withou	Acceptable				
methods of construction that avoid such penetration. Slates showing exfoliation splitting or other structural changes i test are not acceptable. There is no limit on carbonate content. However, the carbonate content determines wh dioxide exposure test procedure should be carried out and, together with the strength, it minimum nominal thickness of the product. 7. Carbonate content. If the carbonate content is less than 20% then the sulfur dioxide exposure test procedure 12326-2:2000, 15.1, applies. If the carbonate content is 20% or more, the sulfur dioxide exposure tests procedure in EN 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. 8. Minimal nominal thickness in relation to carbonate content and sulfur dioxide exposure code. Carbonate content % $ SO_2 \text{ exposure test code from EN 12326-2:2000, 15.1} $ $ S1 \text{ Depth of softened layer from EN12326-2:2000, 15.2} $ $ S1 \text{ None} $ $ S2 \text{ Pais} +5\% $ $ S3 \text{ Pais} +6\% $ $ S1 \text{ Pais} +5\% $ $ S2 \text{ Pais} +5\% $ $ S2 \text{ Pais} +10\% $ $ S3 \text{ Pais} +10\% $ $ S4 \text{ Pais} +8.0 \text{ mm or switch to in EN 12326-2:2000, 15.2} $		pearance changes of metallic minerals which penetrate the slate and risk the					
dioxide exposure test procedure should be carried out and, together with the strength, is minimum nominal thickness of the product. 7. Carbonate content. If the carbonate content is less than 20% then the sulfur dioxide exposure test procedure 12326-2:2000, 15.1, applies. If the carbonate content is 20% or more, the sulfur dioxide exposure tests procedure in EN 12326-2:2000, 15.2 apply. The minimum thickness is calculated using the table below. 8. Minimal nominal thickness in relation to carbonate content and sulfur dioxide exposure code. Carbonate content % $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ds of construction						
Carbonate content % SO_2 exposure test code from EN 12326-2:2000, 15.1 Depth of softened layer from EN12326-2:2000, 15.2 Thickness adjustment \$1 None \$2 $e_{bi} + 5\%$ \$3 $e_{bi} \ge 8.0$ mm or switch to in EN 12326-2:2000, 15. \$1 $e_{bi} + 5\%$ \$2 $e_{bi} + 10\%$ \$3 $e_{bi} \ge 8.0$ mm or switch to	dioxide exposure test procedure should be carried out and, together with the strength minimum nominal thickness of the product. If the carbonate content is less than 20% then the sulfur dioxide exposure test procedure in EN 12326-2:2000, 15.1, applies. If the carbonate content is 20% or more, the sulfur exposure tests procedure in EN 12326-2:2000, 15.2 apply. The minimum thickness of the product.						
S1	mal nominal thick	tent and sulfur dioxide exposure code.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nate content %	FNA 222C 2-2000 4 F 2 THICKNESS AUI	Thickness adjustment				
≤5.0 S3 $e_{bi} \ge 8.0 \text{ mm or switch to}$ in EN 12326-2:2000, 15. S1 $e_{bi} + 5\%$ S2 $e_{bi} + 10\%$ < ≤20.0 S3 $e_{bi} \ge 8.0 \text{ mm or switch to}$		None					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>e</i> _{bi} +5%	<i>e</i> _{bi} +5%				
>5.0 S2 e_{bi} +10% e_{bi} ≥8.0mm or switch to		$\begin{array}{c} e_{bi}\!\ge\!8.0~\mathrm{mm~or}\\ \mathrm{in~EN~12326-2} \end{array}$	$e_{bi} \ge 8.0$ mm or switch to the test in EN 12326-2:2000, 15.2				
<20.0 S3 $e_{bi} \ge 8.0$ mm or switch to		e _{bi} +5%	<i>e</i> _{bi} +5%				
S3 Since Si		<i>e</i> _{bi} +10%	e _{bi} +10%				
			e_{bi} ≥8.0mm or switch to the test in EN 12326-2:2000, 15.2				
\geq 20.0 0-0.7mm $e_{bi} + 0.5$ mm + $7t^2$		0-0.7mm $e_{bi} + 0.5$ mm +	$7t^2$				
e_{bi} is the basic individual thickness obtained from 3 above in millimeters t is the thickness of the softened layer obtained from EN 12326-2:2000, 15.2 in millimeters 9. Non-carbonate carbon content: The non-carbonate content shall be less than 2%	thickness of the	12326-2:2000, 15.2 in millimeters					

BS EN 12326-1:2004 Testing Explained

BS EN 12326-1:2004 is the new European standard for slate and stone products for discontinues roofing or cladding. This replaces the old BS 680-2:1971.

Following is a brief explanation, explaining the tests and standards our slate reaches in order to conform to the new standard.

1. Dimensions

Tolerances are provided for the length, width, individual thickness, flatness, rectangularity and edge deviation, of the slate being tested.

The packed thickness for 100 slates must be calculated for every pallet to allow for the calculation of the average roofing slate thickness, with a reduction applied on the surface finish.

2. Flexural Strength

The slate test samples are supported on two bars and a third central bar is pushed down on the slate until failure occurs. The test is carried out both parallel and perpendicular to the long edge of the roofing slate. From the results gained a characteristic modulus of rupture is calculated (basically a ratio) and the larger of the two values is used for calculating the minimum individual thickness of the roofing slate.

4. Water Absorption

The slate is dried to a constant weight; it is then immersed in water. The absorption percentage is determined via the difference in mass. If the value obtained is less than 0.6%, the slate is classed as A1, whereas, if it is above 0.6% it is classed A2.

5. Freeze-Thaw Test

This test is only required on A2 classed slates. The slate is submitted to 100 cycles of freezing in air, followed by thawing in water, once this is complete the flexural strength test is repeated. If there is a significant change in results, the slate is deemed not suitable and does not pass the European standard.

Non-Carbonate Content

This test verifies the amount of graphite present in the slate, as well as oils and other organic matter. If the slate contains in excess of 2% graphite, it fails the test and does not pass the European standard.

Carbonate Content


These groups determine the thickness of the slate. The groups also determine the method of sulphur dioxide testing,

Sulphur Dioxide Exposure For Slate With Less Than 20% Carbonate

The slate is exposed to sulphur dioxide at two different concentrations for a duration of 21 days. Depending upon changes during the test, one of 3 codes will be given. The code is then used to apply a thickness adjustment, depending on the carbonate content of the slate.

UK Slate Limited www.slate.uk.com

Sulphur Dioxide Exposure For Slates With More Than 20% Carbonate

The slate is subjected to surface scraping before and after exposure to sulphur dioxide vapor. After each exposure there is an increase in material removed, this carries on until the depth of softening is reached. A thickness adjustment is then applied to all slates, except for in the case where the softened layer is greater than 0.7mm.

Thermal Cycle Test

The slate is subjected to 20 cycles of immersion in water immediately followed by drying at 100 degrees Celsius, upon completion an inspection occurs for the presence of potentially harmful mineral components:

- T1- for slate with colour changes that do not affect the structure and form runs of discoloration.
- T2- for slates with colour runs that do not cause structural change.
- T3- for slates where holes may be formed from the oxidization of inclusion.

If exfoliation, splitting or other structural changes occur, the roofing slate does not pass the test and is therefore not up to European standard.

Petrographic Examination

Geological appraisal that includes optical microscopy, x-ray diffraction and scanning electron microscopy. This examination determines the type of roofing slate and weather there is any presence of harmful or dangerous structures or minerals.