

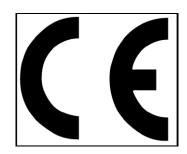
	Е	N1232	26-1:	2004				
Commercial document issued by:			Welsh Slate, Penrhyn Quarry, RE:R-ID-8.2.4/4.1 11					
Location of the mine quarry:			Cwt-y-Bugail Quarry, Llan Ffestiniog, Gwynedd					
Date of sampling: November 20	Date of sampling: November 2015			Date of testing: November 2015- April 2016				
This document records the conformal of the test results and the requirement 1:2004								
Product description and comme	ercial name	Cwt-y	Conformity					
1. Dimensional tolerances								
Format			Rectangular					
Deviation from declared length			า				Yes	
Deviation from declared width	Deviation from declared width						Yes	
Deviation from declared squareness			0.25%					
Deviation from straightness of edges			1.0mm					
Slate type for deviation from flatness		Very Smooth Smooth Normal Textured						
Deviation from flatness	Deviation from flatness		0.1%					
2. Thickness	2. Thickness							
Slate type for packed thickness calculation					Normal			
Nominal thickness and variation					7mm, ±35%		Yes	
3. Strength								
Characteristic MoR		Trans	verse	29.5N/mm ²	Longitudinal	56.3N/mm ²	Yes	
Mean failure load		Trans	verse	629N	Longitudinal	1505N	Yes	
4. Water absorption		W1 (≤0.6) – 0.13%					Yes	
5. Freeze thaw							NR	
6. Thermal cycle test			T1					
7. Carbonate content			1.62%					
8. Sulphur dioxide	≤20% carbonate	S1					Yes	
Exposure tests	>20% carbonate						NR	
9. Non-carbonate carbon content			1%					
10. External fire exposure			Deemed to satisfy Broof					
11. Reaction to fire			Deemed to satisfy class A1					
12. Release of dangerous subs	12. Release of dangerous substances			None in conditions of use as roofing or external cladding				

Date of sampling and testing

Welsh Dark Blue Grey

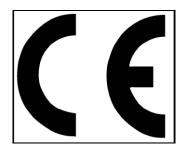
If more than on date is applicable to sampling or testing they

should be indicated against the individual test results


Product description			Slate for roofing and external cladding or carbonate slate for roofing and external cladding						
1. Dimensional To	lerances			<u> </u>	<u></u>				
Length and width				Maximum deviation ± 5mm					
Deviation from sq	uareness			Maximum deviation ±1% of the length					
Deviation from str	Deviation from straightness				Slate length ≤500mm Permitted deviation ≤5mm				
of edges				Slate length >	500mm Permi	itted deviation ≤1	% of the length		
Flatness: The limit				Slate type	Maximum de slate length	eviation from flat	ness as a % of the		
flatness is defined The bevelled edge				Very smooth	<0.9				
convex face. Slate	es with devia	tion from		Smooth	<1.0	<1.0			
	latness in excess of the limit may be used or special applications			Normal	<1.5	<1.5			
				Textured	<2.0				
be Lo 3. Strength or	low. ngitudinal an modulus. Ho	nd transverse lowever the bas	bending str	ength and modu	ulus of rupture termined as a	e; there is no limi	as shown in 7 and 8 It for bending strength bend strength using the		
$e_{l} = x \sqrt{\frac{l}{R_{cl}}}$ $e_{t} = x \sqrt{\frac{b}{R_{ct}}}$	J		Where e_l is the e_t is the b is the R_{ct} is the	e longitudinal thice transverse thice length of slate, width of the sla	ckness in mill kness, in milli in millimeters ite, in millimet	imeters(mm) imeters (mm) s (mm) ters(mm) odulus of rupture	in megapascals (MPa)		
National factor x	Country	Transverse	Longitudi		Country	Transverse	Longitudinal		
	Belgium	1.0	1.0		Italy	1.2	1.2		
	†					1	+		
	France	1.0	1.0		Spain	1.0	1.2		

Those countries that have not declared a national value should select a value or a pair of values in relation to their countries climate and traditional construction techniques. It should not be less than the minimum value or pair of values given above.

individual thickness of the slate e_{bi} . The basic individual thickness is increased in relation to the slates performance in the appropriate sulfur dioxide test as shown in 7 and 8 below. For a significant difference between the longitudinal and transverse modulus of rupture the t-statistic is greater than 2.021


 e_l and e_t are determined by using the length/ and the width b of the slates. The maximum value determined is the basic

4. Water absorption	of the	The water absorption of slates shall not exceed 0.6% unless they can satisfy the requirements of the free-thaw test.						
5. Freeze-thaw test	streng	th using a one-sided St	n greater than 0.6% shall show udent's t-test at the 2.5% signife not required to undergo a free	icant level (slates wi				
6. Thermal cycle tes	st: The fo	ollowing table explains th	ne meaning of the test codes:					
Code Observation in the test								
affect th	No changes in appearance. Surface oxidation of metallic minerals. Color changes that neither affect the structure nor form runs of discoloration.							
Oxidation or appearance changes of the metallic inclusions with runs of discoloration but without structural changes.								
T3 Oxidatio formatio	Oxidation or appearance changes of metallic minerals which penetrate the slate and risk the formation of holes.							
	ction that avoid		water penetration should only showing exfoliation splitting or					
7. Carbonate conter	nt. If the of 12326 expos	oxide exposure test procedure should be carried out and, together with the strength, the nimum nominal thickness of the product. The carbonate content is less than 20% then the sulfur dioxide exposure test procedure in EN 326-2:2000, 15.1, applies. If the carbonate content is 20% or more, the sulfur dioxide posure tests procedure in EN 12326-2:2000, 15.2 apply. The minimum thickness is localized using the table below.						
8. Minimal nominal	thickness in rela	ition to carbonate conte	nt and sulfur dioxide exposure	code.				
Carbonate content of	% SO ₂ of from E	exposure test code EN 12326-2:2000, 15.1	Depth of softened layer from EN12326-2:2000, 15.2	Thickness adjustment				
	S1			None				
	S2			<i>e</i> _{bi} +5%				
≤5.0	S3			e_{bi} ≥8.0 mm or switch to the test in EN 12326-2:2000, 15.2				
	S1			<i>e</i> _{bi} +5%				
>5.0	S2			<i>e</i> _{bi} +10%				
<20.0	S3			e_{bi} ≥8.0mm or switch to the tes in EN 12326-2:2000, 15.2				
20.0			0-0.7mm	2				
e_{bi} is the basic indition to the street table to the street table to the street table table to the street table ta	vidual thickness	obtained from 3 above	in millimeters					
	the soliched lay	er obtained from Ein 12	2326-2:2000, 15.2 in millimeters	5				

BS EN 12326-1:2004 Testing Explained

BS EN 12326-1:2004 is the new European standard for slate and stone products for discontinues roofing or cladding. This replaces the old BS 680-2:1971.

Following is a brief explanation, explaining the tests and standards our slate reaches in order to conform to the new standard.

1. Dimensions

Tolerances are provided for the length, width, individual thickness, flatness, rectangularity and edge deviation, of the slate being tested.

The packed thickness for 100 slates must be calculated for every pallet to allow for the calculation of the average roofing slate thickness, with a reduction applied on the surface finish.

2. Flexural Strength

The slate test samples are supported on two bars and a third central bar is pushed down on the slate until failure occurs. The test is carried out both parallel and perpendicular to the long edge of the roofing slate. From the results gained a characteristic modulus of rupture is calculated (basically a ratio) and the larger of the two values is used for calculating the minimum individual thickness of the roofing slate.

4. Water Absorption

The slate is dried to a constant weight; it is then immersed in water. The absorption percentage is determined via the difference in mass. If the value obtained is less than 0.6%, the slate is classed as A1, whereas, if it is above 0.6% it is classed A2.

5. Freeze-Thaw Test

This test is only required on A2 classed slates. The slate is submitted to 100 cycles of freezing in air, followed by thawing in water, once this is complete the flexural strength test is repeated. If there is a significant change in results, the slate is deemed not suitable and does not pass the European standard.

Non-Carbonate Content

This test verifies the amount of graphite present in the slate, as well as oils and other organic matter. If the slate contains in excess of 2% graphite, it fails the test and does not pass the European standard.

Carbonate Content

These groups determine the thickness of the slate. The groups also determine the method of sulphur dioxide testing,

Sulphur Dioxide Exposure For Slate With Less Than 20% Carbonate

The slate is exposed to sulphur dioxide at two different concentrations for a duration of 21 days. Depending upon changes during the test, one of 3 codes will be given. The code is then used to apply a thickness adjustment, depending on the carbonate content of the slate.

UK Slate Limited www.slate.uk.com

Sulphur Dioxide Exposure For Slates With More Than 20% Carbonate

The slate is subjected to surface scraping before and after exposure to sulphur dioxide vapor. After each exposure there is an increase in material removed, this carries on until the depth of softening is reached. A thickness adjustment is then applied to all slates, except for in the case where the softened layer is greater than 0.7mm.

Thermal Cycle Test

The slate is subjected to 20 cycles of immersion in water immediately followed by drying at 100 degrees Celsius, upon completion an inspection occurs for the presence of potentially harmful mineral components:

- T1- for slate with colour changes that do not affect the structure and form runs of discoloration.
- T2- for slates with colour runs that do not cause structural change.
- T3- for slates where holes may be formed from the oxidization of inclusion.

If exfoliation, splitting or other structural changes occur, the roofing slate does not pass the test and is therefore not up to European standard.

Petrographic Examination

Geological appraisal that includes optical microscopy, x-ray diffraction and scanning electron microscopy. This examination determines the type of roofing slate and weather there is any presence of harmful or dangerous structures or minerals.